BACKGROUND: Ca(2+) release-activated Ca(2+) (CRAC) channels are highly Ca(2+) selective plasma membrane channels formed by the hexameric assembly of Orai subunits, with a predominant role for Orai1. Two Orai1 variants have been identified, Orai1α, which comprises 301 amino acids, and a short variant, Orai1β, lacking the first N-terminal 63 or 71 amino acids; however, little is known about their possible heteromerization to form CRAC channels. Here we show that Orai1α and Orai1β exhibit different lipid raft distributions in resting cells when expressed individually, likely due to the presence of a caveolin-binding domain exclusively in Orai1α. However, when both variants are co-expressed, they show a similar distribution predominantly in the lipid raft domains, indicating potential interaction between the two Orai1 forms. METHODS: A lipid raft isolation protocol in combination with Western blotting assay was conducted to detect the expression of each Orai1 variants in the isolated membrane fractions. Ca(2+) mobilization was determined using fura-2 and G-GECO1.2 fused to Orai1α fluorescence. Evidence of physical interaction between both Orai1 variants was provided using co-immunoprecipitation, APEX2 peroxidase-catalyzed proximity labeling, Förster resonance energy transfer (FRET) and super-resolution microscopy. RESULTS: Our results indicate that Orai1α and Orai1β exhibit different lipid raft partitioning in resting cells when expressed individually, likely attributed to the presence of a caveolin-binding domain in Orai1α. However, when both variants are co-expressed, they show a similar distribution predominantly in the lipid raft domains, indicating potential interaction between the two Orai1 forms. Expression of a dominant-negative Orai1β mutant has been found to interfere with Orai1α-mediated Ca(2+) entry. Using co-immunoprecipitation, APEX2 peroxidase-catalyzed proximity labeling, Förster resonance energy transfer (FRET) and super-resolution microscopy our results indicate that there is certain interaction between Orai1α and Orai1β although both variants form mostly independent channels. CONCLUSIONS: Our results indicate that while Orai1α and Orai1β mostly form separate CRAC channels, a small subset of both Orai1 variants combine to form heteromeric channels. These findings provide new insights on the nature of CRAC channels.
A subset of Orai1α and Orai1β subunits heteromerizes to form CRAC channels.
Orai1α和Orai1β亚基的一部分异源二聚化形成CRAC通道
阅读:5
作者:Lopez Jose J, JardÃn Isaac, Jiménez-Velarde Vanesa, Alvarado Sandra, MacÃas-DÃaz Alvaro, Nieto-Felipe Joel, MartÃn-Romero Francisco J, Smani Tarik, Rosado Juan A
| 期刊: | Cell Communication and Signaling | 影响因子: | 8.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 2; 23(1):260 |
| doi: | 10.1186/s12964-025-02271-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
