Syndromic craniosynostosis caused by mutations in FGFR2 is characterised by developmental pathology in both endochondral and membranous skeletogenesis. Detailed phenotypic characterisation of features in the membranous calvarium, the endochondral cranial base and other structures in the axial and appendicular skeleton has not been performed at embryonic stages. We investigated bone development in the Crouzon mouse model (Fgfr2(C342Y)) at pre- and post-ossification stages to improve understanding of the underlying pathogenesis. Phenotypic analysis was performed by whole-mount skeletal staining (Alcian Blue/Alizarin Red) and histological staining of sections of CD1 wild-type (WT), Fgfr2(C342Y/+) heterozygous (HET) and Fgfr2(C342Y/C342Y) homozygous (HOM) mouse embryos from embryonic day (E)12.5-E17.5 stages. Gene expression (Sox9, Shh, Fgf10 and Runx2) was studied by in situ hybridisation and protein expression (COL2A1) by immunohistochemistry. Our analysis has identified severely decreased osteogenesis in parts of the craniofacial skeleton together with increased chondrogenesis in parts of the endochondral and cartilaginous skeleton in HOM embryos. The Sox9 expression domain in tracheal and basi-cranial chondrocytic precursors at E13.5 in HOM embryos is increased and expanded, correlating with the phenotypic observations which suggest FGFR2 signalling regulates Sox9 expression. Combined with abnormal staining of type II collagen in pre-chondrocytic mesenchyme, this is indicative of a mesenchymal condensation defect. An expanded spectrum of phenotypic features observed in the Fgfr2(C342Y/C342Y) mouse embryo paves the way towards better understanding the clinical attributes of human Crouzon-Pfeiffer syndrome. FGFR2 mutation results in impaired skeletogenesis; however, our findings suggest that many phenotypic aberrations stem from a primary failure of pre-chondrogenic/osteogenic mesenchymal condensation and link FGFR2 to SOX9, a principal regulator of skeletogenesis.
Analysis of the Fgfr2(C342Y) mouse model shows condensation defects due to misregulation of Sox9 expression in prechondrocytic mesenchyme.
对 Fgfr2(C342Y) 小鼠模型的分析表明,由于软骨前间充质中 Sox9 表达失调,导致凝聚缺陷
阅读:8
作者:Peskett Emma, Kumar Samin, Baird William, Jaiswal Janhvi, Li Ming, Patel Priyanca, Britto Jonathan A, Pauws Erwin
| 期刊: | Biology Open | 影响因子: | 1.700 |
| 时间: | 2017 | 起止号: | 2017 Feb 15; 6(2):223-231 |
| doi: | 10.1242/bio.022178 | 种属: | Mouse |
| 研究方向: | 骨科研究 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
