OBJECTIVE AND DESIGN: Immune defence requires systemic metabolic changes to redirect energy and nutrients to activated immune cells. The circadian clock is known to control the immune response, but its role in regulating metabolic adaptations following the immune challenge remains poorly understood. We aimed to examine the inflammatory and metabolic responses in rat liver and visceral white adipose tissue (vWAT) after time-of-day-dependent endotoxin stimulation under a regular light/dark cycle or dim artificial light at night (ALAN; ~2 lx), which disrupts immune and metabolic rhythms. Male rats were challenged with lipopolysaccharide (LPS) either during the day or night and acute changes in metabolic pathways and the peripheral metabolic clocks were analysed at both systemic and molecular levels. RESULTS: In the control light/dark cycle, we observed higher fatty acid (FA) mobilization in vWAT after daytime than nighttime LPS injection. Similarly, hepatic glucose metabolism was more responsive to daytime than nighttime LPS, while the opposite trend was observed for FA uptake and synthesis. This daily variability in metabolic changes was associated with the inflammatory response, involving nuclear factor interleukin-3 regulated (NFIL3) in the liver and nuclear factor-kappa B (NF-κB)/NLR family, pyrin domain containing 3 (NLRP3) inflammasome pathway in vWAT. Hepatic and adipose clocks also showed time-of-day-dependent response to LPS, indicating a direct link to circadian regulation. Disruption of metabolic clocks by ALAN impaired the capacity of rats to maintain lipid metabolic adaptations during inflammation. CONCLUSIONS: Together, our results highlight the role of circadian clocks in LPS-induced responses of glucose and FA metabolism and their susceptibility to disruption by ALAN.
Lipid metabolic adaptations during inflammation are controlled by the circadian clock and impaired by light at night.
炎症期间的脂质代谢适应受生物钟控制,并受夜间光照的影响
阅读:6
作者:Benedikova Beata, Sebenova Jerigova Viera, Zeman Michal, Okuliarova Monika
| 期刊: | Inflammation Research | 影响因子: | 5.400 |
| 时间: | 2025 | 起止号: | 2025 Jun 30; 74(1):96 |
| doi: | 10.1007/s00011-025-02066-9 | 研究方向: | 代谢 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
