Prenatal exposure to bisphenol A disrupts RNA splicing in the prefrontal cortex and promotes behaviors related to autism in offspring.

产前接触双酚A会破坏前额皮质中的RNA剪接,并导致后代出现与自闭症相关的行为

阅读:3
作者:Panjabud Pawinee, Kanlayaprasit Songphon, Thongkorn Surangrat, Songsritaya Kwanjira, Lertpeerapan Pattanachat, Kasitipradit Kasidit, Jantheang Thanawin, Sarobol Suthathip, Saeliw Thanit, Hu Valerie W, Imai Takeshi, Sarachana Tewarit
Prenatal exposure to bisphenol A (BPA), a common endocrine disruptor, has been increasingly implicated in neurodevelopmental disorders, including autism spectrum disorder. This study explores the molecular mechanisms by which prenatal BPA exposure affects alternative RNA splicing in the prefrontal cortex and investigates the potential link between alternative RNA splicing and autism-related behaviors in rat offspring. Using RNA sequencing and high-resolution melting real-time PCR, we identified differentially alternative splicing events associated with autism candidate genes. Gene ontology and pathway analyses revealed significant enrichment of differentially alternative splicing genes and neurological pathways relevant to autism. BPA appears to act through autism-related transcription factors, affecting RNA-binding proteins. Altered expressions of these RNA-binding proteins influenced alternative RNA splicing events within key autism-related genes, implicating them in disrupted synaptogenesis. Behavioral analyses of offspring exposed to BPA revealed autism-associated traits, including hyperactivity, anxiety, and aggression, which correlated with the observed sex-specific alternative RNA splicing patterns. These findings suggest that BPA-induced alterations of transcription factors and RNA-binding proteins affect alternative RNA splicing and synaptic development, potentially contributing to autism pathophysiology. This research underscores the role of environmental factors in autism etiology and highlights the importance of awareness and preventive measures against prenatal BPA exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。