The depletion of Circ-PRKDC enhances autophagy and apoptosis in T-cell acute lymphoblastic leukemia via microRNA-653-5p/Reelin mediation of the PI3K/AKT/mTOR signaling pathway.

Circ-PRKDC 的耗竭通过 microRNA-653-5p/Reelin 介导的 PI3K/AKT/mTOR 信号通路增强 T 细胞急性淋巴细胞白血病中的自噬和凋亡

阅读:5
作者:Ling Zhang, Fang Zhi-Gang, Wu Jie-Yong, Liu Jia-Jun
A range of circular (Circ) RNAs have been demonstrated to be of therapeutic significance for the treatment of acute lymphoblastic leukemia (ALL). Here, we investigated the mechanisms underlying the action of Circ-PRKDC and the microRNA-653-5p/Reelin (miR-653-5p/RELN) axis in T-cell ALL (T-ALL).Clinical specimens were obtained from patients with T-ALL (n = 39) and healthy controls (n = 30). In each specimen, we determined the expression levels of Circ-PRKDC, miR-653-5p, and RELN. Human T-ALL cells (Jurkat) were transfected with Circ-PRKDC- or miR-653-5p-related sequences to investigate cell proliferation, apoptosis, and autophagy. We also determined the levels of Circ-PRKDC, miR-653-5p, RELN, and signaling proteins related to phosphoinositide 3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR). Finally, we decoded the interactions between Circ-PRKDC, miR-653-5p, and RELN. The expression levels of Circ-PRKDC and RELN were upregulated in T-ALL tissues and cells while the levels of miR-653-5p were downregulated. Thereafter, then silencing of Circ-PRKDC, or the enforced expression of miR-653-5p, repressed the expression of RELN and the activation of the PI3K/AKT/mTOR signaling pathway, thus enhancing cell autophagy and apoptosis, and disrupting cell proliferation. Circ-PRKDC acted a sponge for miR-653-5p while miR-653-5p targeted RELN. The knockdown of miR-653-5p abrogated the silencing of Circ-PRKDC-induced effects in T-ALL cells. The depletion of Circ-PRKDC elevated miR-653-5p to silence RELN-mediated PI3K/AKT/mTOR signaling activation, thereby enhancing autophagy and apoptosis in T-ALL cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。