There are many types of DNA damage that are repaired by a multiplicity of different repair pathways. All damage and repair occur in the context of chromatin, and histone modifications are involved in many repair processes. We have analyzed the roles of H2A and its modifications in repair by mutagenizing modifiable residues in the N- and C-terminal tails of yeast H2A and by testing strains containing these mutations in multiple DNA repair assays. We show that residues in both tails are important for homologous recombination and nonhomologous end-joining pathways of double-strand break repair, as well as for survival of UV irradiation and oxidative damage. We show that H2A serine 122 is important for repair and/or survival in each of these assays. We also observe a complex pattern of H2A phosphorylation at residues S122, T126, and S129 in response to different damage conditions. We find that overlapping but nonidentical groups of H2A residues in both tails are involved in different pathways of repair. These data suggest the presence of a set of H2A "damage codes" in which distinct patterns of modifications on both tails of H2A may be used to identify specific types of damage or to promote specific repair pathways.
Diverse roles for histone H2A modifications in DNA damage response pathways in yeast.
组蛋白H2A修饰在酵母DNA损伤反应通路中发挥多种作用
阅读:8
作者:Moore John D, Yazgan Oya, Ataian Yeganeh, Krebs Jocelyn E
| 期刊: | Genetics | 影响因子: | 5.100 |
| 时间: | 2007 | 起止号: | 2007 May;176(1):15-25 |
| doi: | 10.1534/genetics.106.063792 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
