Intervertebral disc degeneration (IDD) is a major contributor to low back pain, a prevalent and debilitating condition. Nucleus pulposus (NP) cells are essential for maintaining disc homeostasis, and their dysfunction plays a crucial role in IDD development. This study aimed to explore the potential role of miR-1275, delivered via mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs), in IDD pathogenesis and to elucidate the underlying molecular mechanisms through in vitro investigations. Decreased miR-1275 expression and elevated endoplasmic reticulum (ER) stress were observed in degenerated human NP tissues compared to normal controls. An in vitro IDD model was established by treating NP cells (NPCs) with advanced glycation end products (AGEs). Subsequent experiments demonstrated that EVs from miR-1275-overexpressing MSCs reduced AGE-induced ER stress, extracellular matrix (ECM) degradation, and apoptosis in NPCs by enhancing ER-phagy. Bioinformatic analyses identified AXIN2 as a direct target of miR-1275. Remarkably, AXIN2 overexpression significantly attenuated the effects of miR-1275 on NPC proliferation, apoptosis, ER stress, and ER-phagy under AGE-induced conditions. Mechanistic studies validated AXIN2 as a target of miR-1275, with miR-1275 binding to the 3' untranslated region of AXIN2 and regulating its expression. Collectively, our in vitro findings reveal that MSCs-EVs carrying miR-1275 can modulate ER stress and enhance ER-phagy in NPCs through the targeted downregulation of AXIN2, suggesting a potential molecular mechanism in IDD pathogenesis.
miR-1275 Delivered via Mesenchymal Stem Cell-Derived Extracellular Vesicles Regulates ER-Phagy Through AXIN2 in Nucleus Pulposus Cells.
miR-1275 通过间充质干细胞来源的细胞外囊泡递送,通过髓核细胞中的 AXIN2 调节内质网吞噬作用
阅读:6
作者:Dong Zhiwu, Zhang Hailong, Yang Wenwei, Huang Keliang, Zhang Xin, Xing Lianxiang, Zhang Ying, Zhao Kewen
| 期刊: | Stem Cells International | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 May 29; 2025:5091529 |
| doi: | 10.1155/sci/5091529 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
