Mealtime alters daily rhythm in nuclear O-GlcNAc proteome to regulate hepatic gene expression.

进餐时间会改变核内 O-GlcNAc 蛋白质组的昼夜节律,从而调节肝脏基因表达

阅读:6
作者:Liu Xianhui, Cai Yao D, Hou Chunyan, Liu Xu, Luo Youcheng, Mendiola Aron Judd P, Xu Xuehan, Luo Yige, Zheng Haiyan, Zhao Caifeng, Chen Ching-Hsuan, Zhang Yong, Xiang Yang K, Ma Junfeng, Chiu Joanna C
The liver circadian clock and hepatic transcriptome are highly responsive to metabolic signals generated from feeding-fasting rhythm. Previous studies have identified a number of nutrient-sensitive signaling pathways that could interpret metabolic input to regulate rhythmic hepatic biology. Here, we investigated the role of O-GlcNAcylation, a nutrient-sensitive post-translational modification (PTM) in mediating metabolic regulation of rhythmic biology in the liver. We observe daily oscillation of global nuclear protein O-GlcNAcylation in the liver of mice subjected to night-restricted feeding (NRF) using label-free global O-GlcNAc proteomics. Additional site-specific O-GlcNAc analysis by tandem mass tag mass spectrometry further supports temporal differences in O-GlcNAcylation by revealing day-night differences. Proteins involved in gene expression are enriched among rhythmically O-GlcNAcylated proteins, suggesting rhythmic O-GlcNAcylation may directly regulate the daily rhythmicity of the hepatic transcriptome. We show that rhythmic O-GlcNAcylation can also indirectly modulate the hepatic transcriptome by interacting with phosphorylation. Several proteins harboring O-GlcNAcylation-phosphorylation interplay motif exhibit rhythmic O-GlcNAcylation and phosphorylation. Specifically, we show that O-GlcNAcylation occurs at a phospho-degron of a key circadian transcriptional activator, circadian locomotor output cycles kaput (CLOCK), thus regulating its stability and transcriptional output. Finally, we report that day-restricted feeding (DRF) in the nocturnal mouse significantly alters O-GlcNAcylation rhythm. Whereas global O-GlcNAcylation analysis indicates dampening of global O-GlcNAcylation rhythm in mice fed under DRF, site-specific analysis reveals differential responses of O-GlcNAc sites when timing of food intake is altered. Notably, a substantial number of O-GlcNAcylation sites exhibit inverted day-night profiles when mice are subjected to DRF. This suggests the dysregulation of daily nuclear protein O-GlcNAcylation rhythm may contribute to the disruption in liver transcriptomic rhythm previously observed in DRF condition. In summary, our results provide new mechanistic insights into metabolic regulation of daily hepatic transcriptomic rhythm via interplay between O-GlcNAcylation and phosphorylation and shed light on the deleterious effects of improper mealtimes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。