Fibro-adipogenic progenitor cells (FAPs) are a heterogeneous population of multipotent mesenchymal cells that give rise to fibroblasts and adipocytes. In response to muscle injury, FAPs are activated and cooperate with inflammatory and muscle stem cells to promote muscle regeneration. In pathological conditions, such as muscular dystrophies, this coordinated response is partially lost and an accumulation of FAPs is observed that is responsible for maladaptive fibrosis, ectopic fat deposition, and impaired muscle regeneration. The role of intracellular thyroid hormone (TH) signaling in this cellular context is largely unknown. Here we show that intracellular 3,5,3'-triiodothyronine (T3) concentration in FAPs is increased in vitro during adipogenic differentiation via the increase of the T3-producing type 2 deiodinase (D2). The adipogenic potential is reduced in FAPs cultured in the presence of 3,3,5'-triiodothyronine (rT3), a specific D2 inhibitor, while exogenous administration of THs is able to induce the expression of relevant adipogenic genes. Accordingly, on genetic D2 depletion in vivo, adipogenesis was significantly reduced in D2KO compared to control mice. These data were confirmed using a FAP-inducible specific D2-KO mouse model, suggesting that a cell-specific D2-depletion in FAPs is sufficient to decrease fatty muscle infiltration and to improve muscle regeneration. Taken together, these data show that TH signaling is dynamically modulated in FAPs wherein D2-produced T3 is required to promote maturation of FAPs into adipocytes.
Type 2 Deiodinase Promotes Fatty Adipogenesis in Muscle Fibroadipogenic Progenitors From Adult Male Mice.
2 型脱碘酶促进成年雄性小鼠肌肉纤维脂肪祖细胞中的脂肪生成
阅读:6
作者:Luongo Cristina, Di Girolamo Daniela, Ambrosio Raffaele, Di Cintio Sara, De Stefano Maria Angela, Porcelli Tommaso, Salvatore Domenico
| 期刊: | Endocrinology | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Mar 24; 166(5):bqaf050 |
| doi: | 10.1210/endocr/bqaf050 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
