Hypoxia-induced metastatic heterogeneity in pancreatic cancer.

缺氧诱导胰腺癌转移异质性

阅读:10
作者:Gunasekaran Pradeep Moon, Wang Qianqian, Chang Yoke-Chen, Guseva Polina, Chauhan Rajika, Kley Alexander, Lee Gene, Roy Siddharth Ghosh, Masoudpoor Yousef, Roberts Arthur, Walton Kelly Watkins, Franciosa Lucyann, Bhat Shafiq, Zachariah Emmanuel, Patel Kishan, Zhou Zhongren, Chen Wenjin, Ni Julie Zhouli, Gu Sam Guoping, Montagna Cristina, Chiou Shin-Heng
In most solid tumors, hypoxia constitutes a defining microenvironmental feature that reprograms malignant cells into a highly metastatic state by driving cellular plasticity and exacerbating chromosomal instability (CIN). However, the mechanisms by which cancer cells concurrently co-opt these elements of hypoxic adaptation to promote metastasis remains poorly understood. Here, we report that hypoxia promotes metastasis by suppressing the JmjC-containing histone lysine demethylase Kdm8. CRISPR/Cas9-mediated targeting of Kdm8 in a Kras;Trp53-driven mouse model of pancreatic ductal adenocarcinoma (PDA) robustly rewires the malignant cell transcriptomic programs, leading to a profound loss of the epithelial morphology and widespread metastatic disease. In PDA patients, a high KDM8-induced gene signature is associated with reduced metastatic burden and better survival in advanced disease. Notably, Kdm8 suppression in normoxia recapitulates key aspects of the global epigenetic and transcriptomic rewiring, mitotic spindle defects, and CIN induced by hypoxia. Moreover, disruption of Kdm8's demethylase activity phenocopies Kdm8 loss, whereas expression of hypermorphic Kdm8 variants resistant to hypoxic suppression markedly reduces metastasis beyond the levels achieved by the wildtype protein. Through the suppression of Kdm8 demethylase function, hypoxia unleashes a potent metastatic program by simultaneously advancing cellular plasticity and CIN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。