A Biomimetic Human Multi-Cellular In Vitro Model of the Blood-Brain Barrier.

血脑屏障的仿生人类多细胞体外模型

阅读:4
作者:Saliba John, Saliba Jessica, El-Sabban Marwan, Mhanna Rami
Current in vitro models fail to recapitulate specific physiological properties of the human blood-brain barrier (BBB); hence the need for a reliable platform to study central nervous system diseases and drug permeability. To mimic the normally tight blood-brain interface, primary human endothelial cells (HAECs) and primary human astrocytes (A) were grown in a confined space of the physical scaffold created by gelatin methacrylate (GelMA) hydrogel to allow optimal astrocyte-endothelial cell direct/indirect interaction. Evidence for a physiologically relevant BBB was established by assessing the expression of tight junction markers conferring the barrier function, and by measuring biophysical attributes using the trans-endothelial electrical resistance (TEER) and the Evans blue albumin (EBA) permeability assay. An HAEC+A three-dimensional (3D) co-culture was associated with 12-fold higher claudin-5 (CLDN5) and cadherin-1 (CDH1 or Epithelial [E]-cadherin) transcriptional levels than two-dimensional (2D) models. This model conferred the highest TEER (45 Ω·cm(2)) in 3D HAEC+A, which value was 30 Ω·cm(2) in 2D (p < 0.01) and 25 Ω·cm(2) in 3D HAEC cultures (p < 0.001). Functionally, in 3D HAEC+A co-cultures, higher TEER resulted in 10-fold and 7-fold lower EBA permeability at 120 min, in HAECs alone or in to 2D co-cultures (p < 0.01). The established human primary cell model has acquired features mimicking the human BBB in vitro, and is now poised to be tested for the permeability of the BBB to pharmacological agents, parasites, cells (such as brain-tropic cancer cell metastasis) and any mechanisms that might involve traversing the BBB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。