Amyloid-Beta Pathology Increases Synaptic Engulfment by Glia in Feline Cognitive Dysfunction Syndrome: A Naturally Occurring Model of Alzheimer's Disease.

β-淀粉样蛋白病理增加猫认知功能障碍综合征中神经胶质细胞对突触的吞噬作用:一种自然发生的阿尔茨海默病模型

阅读:6
作者:McGeachan Robert I, Ewbank Lucy, Watt Meg, Sordo Lorena, Malbon Alexandra, Salamat Muhammad Khalid F, Tzioras Makis, De Frias Joao Miguel, Tulloch Jane, Houston Fiona, Gunn-Moore Danièlle, Spires-Jones Tara L
Feline cognitive dysfunction syndrome (CDS; a.k.a. feline dementia) is an age-related neurodegenerative disorder, comparable to dementia in people, characterised by behavioural changes such as increased vocalisation, altered social interactions, sleep-wake cycle, disorientation and house-soiling. Although the underlying mechanisms remain poorly understood, pathologies similar to those observed in Alzheimer's disease (AD) have been identified in the brains of aged or CDS-affected cats, including brain atrophy, neuronal loss, amyloid-beta plaques, tau pathology and cerebral amyloid angiopathy. Neuroinflammation and synapse loss, other important hallmarks of AD, may also play important roles in feline ageing and CDS, but these are yet to be explored. Several mechanisms of synapse loss have been described in human AD and mouse models of amyloidopathy, including synaptic accumulation of amyloid-beta and the aberrant induction of synaptic engulfment by microglia and astrocytes. In this study, immunohistochemistry and confocal microscopy were used to examine the parietal cortex of young (n = 7), aged (n = 10) and CDS-affected (n = 8) cats. Linear mixed effect modelling revealed that amyloid-beta accumulates within synapses in the aged and CDS-affected brain. Additionally, in the aged and CDS groups, there was microgliosis, astrogliosis and increased synaptic engulfment by microglia and astrocytes in regions with Aβ plaques. Further, microglia and astrocytes show increased internalisation of amyloid-beta-containing synapses near plaques. These findings suggest that amyloid-beta exerts a pathogenic effect in the feline brain, with mechanisms mirroring those seen in human AD. Importantly, these results support the use of feline CDS as a naturally occurring, translational model of Alzheimer's disease, offering valuable insights into AD pathogenesis and potential therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。