Docosahexaenoic acid inhibits Ca2+ influx and downregulates CaSR by upregulating microRNA-16 in pulmonary artery smooth muscle cells

二十二碳六烯酸通过上调肺动脉平滑肌细胞中的 microRNA-16 来抑制 Ca2+ 内流并下调 CaSR

阅读:5
作者:Jin-Jun Liu, Ming-Ming Tang, Ming-Li Zhu, Cai-Xia Xie, Pin-Fang Kang, Xuan Ling, Heng Zhang, Xiao-Jing Wang, Bi Tang

Abstract

Docosahexaenoic acid (DHA) is reported to have the potential to ameliorate pulmonary arterial hypertension (PAH), while the specific mechanism is still obscure. This study aims to investigate the function of DHA in pulmonary artery smooth muscle cells (PASMCs) and explore the underlying mechanism. In our study, DHA was used to incubate PASMCs. Cytosolic-free Ca2+ concentration ([Ca2+ ]cyt) was measured using Fluo-3 AM method. Real-time polymerase chain reaction was used to detect microRNA-16 (miR-16) and calcium-sensing receptor (CaSR) messenger RNA expression levels. CCK-8 assay, BrdU assay, and Transwell assay were employed to detect the effects of DHA on proliferation and migration of PASMCs. CaSR was confirmed as a direct target of miR-16 using dual-luciferase assay, polymerase chain reaction, and Western blot analysis. It was found that DHA significantly inhibited PASMC proliferation and migration and decreased [Ca2+ ]cyt. After transfection of miR-16 mimics, proliferation and migration ability of PASMCs were significantly inhibited, whereas opposite effects were observed after miR-16 inhibition. [Ca2+ ]cyt was also inhibited by miR-16 transfection. DHA then promoted the expression of miR-16, and the effects of DHA on PASMCs were annulled when miR-16 was inhibited. CaSR was identified as a direct target of miR-16. CaSR was inhibited directly by miR-16 and indirectly by DHA. In conclusion, DHA inhibits the proliferation and migration of PASMCs, and probably ameliorates PAH via regulating miR-16/CaSR axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。