Three-dimensional regulatory hubs support oncogenic programs in glioblastoma.

三维调控中心支持胶质母细胞瘤中的致癌程序

阅读:9
作者:Breves Sarah L, Di Giammartino Dafne Campigli, Nicholson James, Cirigliano Stefano, Mahmood Syed Raza, Lee Uk Jin, Martinez-Fundichely Alexander, Jungverdorben Johannes, Singhania Richa, Rajkumar Sandy, Kirou Raphael, Studer Lorenz, Khurana Ekta, Polyzos Alexander, Fine Howard A, Apostolou Effie
Dysregulation of enhancer-promoter communication in the three-dimensional (3D) nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled the 3D enhancer-promoter networks of patient-derived glioblastoma stem cells to identify central regulatory nodes. We focused on hyperconnected 3D hubs and demonstrated that hub-interacting genes exhibit high and coordinated expression at the single-cell level and are associated with oncogenic programs that distinguish glioblastoma from low-grade glioma. Epigenetic silencing of a recurrent hub-with an uncharacterized role in glioblastoma-was sufficient to cause downregulation of hub-connected genes, shifts in transcriptional states, and reduced clonogenicity. Integration of datasets across 16 cancers identified "universal" and cancer-type-specific 3D hubs that enrich for oncogenic programs and factors associated with worse prognosis. Genetic alterations could explain only a small fraction of hub hyperconnectivity and increased activity. Overall, our study provides strong support for the potential central role of 3D regulatory hubs in controlling oncogenic programs and properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。