Structural Analysis of Nonapeptides Derived from Elastin

弹性蛋白九肽的结构分析

阅读:6
作者:Belén Hernández, Jean-Marc Crowet, Joseph Thiery, Sergei G Kruglik, Nicolas Belloy, Stéphanie Baud, Manuel Dauchez, Laurent Debelle

Abstract

Elastin-derived peptides are released from the extracellular matrix remodeling by numerous proteases and seem to regulate many biological processes, notably cancer progression. The canonical elastin peptide is VGVAPG, which harbors the XGXXPG consensus pattern, allowing interaction with the elastin receptor complex located at the surface of cells. Besides these elastokines, another class of peptides has been identified. This group of bioactive elastin peptides presents the XGXPGXGXG consensus sequence, but the reason for their bioactivity remains unexplained. To better understand their nature and structure-function relationships, herein we searched the current databases for this nonapeptide motif and observed that the XGXPGXGXG elastin peptides define a specific group of tandemly repeated patterns. Further, we focused on four tandemly repeated human elastin nonapeptides, i.e., AGIPGLGVG, VGVPGLGVG, AGVPGLGVG, and AGVPGFGAG. These peptides were analyzed by means of optical spectroscopies and molecular dynamics. Ultraviolet-circular dichroism and Raman spectra are consistent with a mixture of β-turn, β-strand, and random-chain secondary elements in aqueous media. Quantitative analysis of their conformations suggested that turns corresponded to half of the total population of structural elements, whereas the remaining half were equally distributed between β-strand and unordered chains. These distributions were confirmed by molecular dynamics simulations. Altogether, our data suggest that these highly dynamic peptides harbor a type II β-turn located in their central part. We hypothesize that this structural element could explain their specific bioactivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。