Enhanced Performance of Novel Amorphous Silicon Carbide Microelectrode Arrays in Rat Motor Cortex.

新型非晶碳化硅微电极阵列在大鼠运动皮层中的增强性能

阅读:4
作者:Haghighi Pegah, Jeakle Eleanor N, Sturgill Brandon S, Abbott Justin R, Solis Elysandra, Devata Veda S, Vijayakumar Gayathri, Hernandez-Reynoso Ana G, Cogan Stuart F, Pancrazio Joseph J
Implantable microelectrode arrays (MEAs) enable the recording of electrical activity from cortical neurons for applications that include brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic implantation conditions. This has largely been attributed to the brain's foreign body response, which is marked by neuroinflammation and gliosis in the immediate vicinity of the MEA implantation site. This has prompted the development of novel MEAs with either coatings or architectures that aim to reduce the tissue response. The present study examines the comparative performance of multi-shank planar, silicon-based devices and low-flexural-rigidity amorphous silicon carbide (a-SiC) MEAs that have a similar architecture but differ with respect to the shank cross-sectional area. Data from a-SiC arrays were previously reported in a prior study from our group. In a manner consistent with the prior work, larger cross-sectional area silicon-based arrays were implanted in the motor cortex of female Sprague-Dawley rats and weekly recordings were made for 16 weeks after implantation. Single unit metrics from the recordings were compared over the implantation period between the device types. Overall, the expression of single units measured from a-SiC devices was significantly higher than for silicon-based MEAs throughout the implantation period. Immunohistochemical analysis demonstrated reduced neuroinflammation and gliosis around the a-SiC MEAs compared to silicon-based devices. Our findings demonstrate that the a-SiC MEAs with a smaller shank cross-sectional area can record single unit activity with more stability and exhibit a reduced inflammatory response compared to the silicon-based device employed in this study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。