Protective Effects of Lovastatin in a Population-Based ALS Study and Mouse Model.

洛伐他汀在基于人群的 ALS 研究和小鼠模型中的保护作用

阅读:4
作者:Kreple Collin J, Searles Nielsen Susan, Schoch Kathleen M, Shen Tao, Shabsovich Mark, Song Yizhe, Racette Brad A, Miller Timothy M
OBJECTIVE: The objective of this study was to use a novel combined pharmacoepidemiologic and amyotrophic lateral sclerosis (ALS) mouse model approach to identify potential motor neuron protective medications. METHODS: We constructed a large, population-based case-control study to investigate motor neuron disease (MND) among US Medicare beneficiaries aged 66 to 90 in 2009. We included 1,128 incident MND cases and 56,400 age, sex, race, and ethnicity matched controls. We calculated MND relative risk for >1,000 active ingredients represented in Part D (pharmacy) claims in 2006 to 2007 (>1 year before diagnosis/reference). We then applied a comprehensive screening approach to select medications for testing in SOD1(G93A) mice: sulfasalazine, telmisartan, and lovastatin. We treated mice with the human dose equivalent of the medication or vehicle via subcutaneous osmotic pump before onset of weakness. We then assessed weight, gait, and survival. In additional mice, we conducted histological studies. RESULTS: We observed previously established medical associations for MND and an inverse dose-response association between lovastatin and MND, with 28% reduced risk at 40 mg/day. In SOD1(G93A) mouse studies, sulfasalazine and telmisartan conferred no benefit, whereas lovastatin treatment delayed onset and prolonged survival. Lovastatin treated mice also had less microgliosis, misfolded SOD1, and spinal motor neuron loss in the ventral horn. INTERPRETATION: Lovastatin reduced the risk of ALS in humans, which was confirmed in an ALS mouse model by delayed symptom onset, prolonged survival, and preservation of motor neurons. Although further studies to understand the mechanism are required, lovastatin may represent a potential neuroprotective therapy for patients with ALS. These data demonstrate the utility of a combined pharmacoepidemiologic and mouse model approach. ANN NEUROL 2023;93:881-892.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。