Thalamic atrophy already occurs in the early stages of multiple sclerosis (MS) and continues progressively throughout the disease. Demyelination is one of the main pathological hallmarks of MS and yet, thalamic demyelination does not correlate well with thalamic atrophy. By combining post-mortem magnetic resonance imaging with immunohistochemistry of thalami from 13 control and 13 MS donors, we investigated the underlying pathological contributors of thalamic atrophy and pathology. We first assessed the volumes of four thalamic nuclei groups (anterior, lateral, medial and posterior). Then, diffusion weighted imaging was used to assess the microstructural integrity of white matter tracts connecting each thalamic nuclei group. In addition, we studied myelination, inflammation, neurodegeneration and microglial activation by immunohistochemistry. We uncovered that medial and posterior thalamic nuclei were more atrophic compared to the anterior and lateral nuclei. Bilateral posterior nuclei and the right medial and anterior nuclei showed reduced fractional anisotropy in connected white matter tracks. We further show that microglial cells in the mediodorsal nuclei have an increased density and morphological complexity in MS compared to control donors. Microglia show signs of phagocytosis of pre-synapses, although we did not observe an overall synaptic loss in the thalamus of MS donors. These microglial changes within mediodorsal nuclei correlated with lower medial thalamic volume. Taken together, this study provides evidence that thalamic (subnuclear) atrophy relates tostructural thalamic network disconnection and within-thalamic microglial changes, but not thalamic demyelination. These findings could impact future treatment strategies aimed at thalamic neuroprotection.
Thalamic atrophy in multiple sclerosis is associated with tract disconnection and altered microglia.
多发性硬化症中的丘脑萎缩与神经束断裂和小胶质细胞改变有关
阅读:4
作者:Rodriguez-Mogeda Carla, Koubiyr Ismail, Prouskas Stefanos E, Georgallidou Margarita, van der Pol Susanne M A, Fernandez Rosalia Franco, de Graaf Yvon Galis, van der Werf Ysbrand D, Jonkman Laura E, Schenk Geert J, Barkhof Frederik, Hulst Hanneke E, Witte Maarten E, Schoonheim Menno M, de Vries Helga E
| 期刊: | Acta Neuropathologica | 影响因子: | 9.300 |
| 时间: | 2025 | 起止号: | 2025 May 28; 149(1):52 |
| doi: | 10.1007/s00401-025-02893-4 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
