JOURNAL/nrgr/04.03/01300535-202512000-00024/figure1/v/2025-01-31T122243Z/r/image-tiff Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies. Biomaterial therapies show promise as medical materials for neural repair through immunomodulation, structural support, and delivery of therapeutic biomolecules. However, a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research. We have deployed a two-dimensional, high-density multicellular cortical brain sheet to develop a facile model of injury (macrotransection/scratch wound) in vitro . The model encompasses the major neural cell types involved in pathological responses post-injury. Critically, we observed hallmark pathological responses in injury foci including cell scarring, immune cell infiltration, precursor cell migration, and short-range axonal sprouting. Delivering test magnetic particles to evaluate the potential of the model for biomaterial screening shows a high uptake of introduced magnetic particles by injury-activated immune cells, mimicking in vivo findings. Finally, we proved it is feasible to create reproducible traumatic injuries in the brain sheet (in multielectrode array devices in situ ) characterized by focal loss of electrical spiking in injury sites, offering the potential for longer term, electrophysiology plus histology assays. To our knowledge, this is the first in vitro simulation of transecting injury in a two-dimensional multicellular cortical brain cell sheet, that allows for combined histological and electrophysiological readouts of damage/repair. The patho-mimicry and adaptability of this simplified model of brain injury could benefit the testing of biomaterial therapeutics in regenerative neurology, with the option for functional electrophysiological readouts.
A macro-transection model of brain trauma for neuromaterial testing with functional electrophysiological readouts.
用于神经材料测试的脑外伤宏观横截面模型,具有功能性电生理读数
阅读:7
作者:Wiseman Jessica, Basit Raja Haseeb, Suto Akihiro, Middya Sagnik, Kabiri Bushra, Evans Michael, George Vinoj, Adams Christopher, Malliaras George, Chari Divya Maitreyi
| 期刊: | Neural Regeneration Research | 影响因子: | 6.700 |
| 时间: | 2025 | 起止号: | 2025 Dec 1; 20(12):3539-3552 |
| doi: | 10.4103/NRR.NRR-D-24-00422 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
