Immunocytochemical evidence of Tulp1-dependent outer segment protein transport pathways in photoreceptor cells.

光感受器细胞中 Tulp1 依赖性外节蛋白运输途径的免疫细胞化学证据

阅读:9
作者:Grossman Gregory H, Watson Rao F, Pauer Gayle J T, Bollinger Kathryn, Hagstrom Stephanie A
Tulp1 is a protein of unknown function exclusive to rod and cone photoreceptor cells. Mutations in the gene cause autosomal recessive retinitis pigmentosa in humans and photoreceptor degeneration in mice. In tulp1-/- mice, rod and cone opsins are mislocalized, and rhodopsin-bearing extracellular vesicles accumulate around the inner segment, indicating that Tulp1 is involved in protein transport from the inner segment to the outer segment. To investigate this further, we sought to define which outer segment transport pathways are Tulp1-dependent. We used immunohistochemistry to examine the localization of outer segment proteins in tulp1-/- photoreceptors, prior to retinal degeneration. We also surveyed the condition of inner segment organelles and rhodopsin transport machinery proteins. Herein, we show that guanylate cyclase 1 and guanylate cyclase activating proteins 1 and 2 are mislocalized in the absence of Tulp1. Furthermore, arrestin does not translocate to the outer segment in response to light stimulation. Additionally, data from the tulp1-/- retina adds to the understanding of peripheral membrane protein transport, indicating that rhodopsin kinase and transducin do not co-transport in rhodopsin carrier vesicles and phosphodiesterase does not co-transport in guanylate cyclase carrier vesicles. These data implicate Tulp1 in the transport of selective integral membrane outer segment proteins and their associated proteins, specifically, the opsin and guanylate cyclase carrier pathways. The exact role of Tulp1 in outer segment protein transport remains elusive. However, without Tulp1, two rhodopsin transport machinery proteins exhibit abnormal distribution, Rab8 and Rab11, suggesting a role for Tulp1 in vesicular docking and fusion at the plasma membrane near the connecting cilium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。