BACKGROUND: Transcriptional co-regulators fine-tune gene expression by modulating transcription factor activity and chromatin dynamics. HCF-1 (Host Cell Factor 1), a conserved transcriptional co-regulator, has been implicated in cell cycle progression, liver metabolism, and regeneration. Loss of hepatocyte-specific HCF-1 in mice leads to spontaneous NAFLD, which rapidly exacerbates to NASH and compromises liver regeneration. While its role in transcriptional regulation is well-established, the impact of HCF-1 on epigenetic modifications remains relatively unexplored. METHODS: To investigate the consequences of HCF-1 depletion, we performed histological and biochemical analyses of murine livers, assessing liver injury, lipid accumulation, and hepatocyte proliferation upon 2/3 partial hepatectomy (PH). Additionally, we conducted RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) for H3K4me3 and RNA polymerase II (POL2) to examine the epigenetic and transcriptional alterations associated with HCF-1 loss. RESULTS: Loss of HCF-1 results in severe liver injury, causing hallmark features of NAFLD, including steatosis, inflammation, fibrosis, and mitochondrial dysfunction. Following injury, hepatocytes typically re-enter the cell cycle to replenish lost cells. However, in the absence of HCF-1, hepatocytes fail to proliferate leading to a progressive decline in liver function. Even upon 2/3 PH, HCF-1-deficient hepatocytes remain arrested in the cell cycle, further exacerbating disease severity and preventing tissue regeneration. RNA-seq analyses revealed significant downregulation of genes involved in cell cycle progression, metabolism, and mitochondrial structure and function including those regulating oxidative phosphorylation. ChIP-seq data showed altered H3K4me3 patterns at promoter and enhancer regions of key hepatic genes. These findings indicate that HCF-1 is essential for maintaining transcriptional and epigenetic landscapes necessary for hepatocyte proliferation and regeneration. CONCLUSIONS: Our study establishes HCF-1 as a critical regulator of hepatic homeostasis, with roles extending beyond transcriptional control to epigenetic regulation of liver function and repair. Loss of HCF-1 not only induces liver injury and NAFLD but also prevents hepatocyte proliferation, impairing regeneration and accelerating disease progression.
Epigenetic modifications in the murine liver upon depletion of transcriptional coregulator host cell factor 1.
转录共调节因子宿主细胞因子 1 耗竭后小鼠肝脏的表观遗传修饰
阅读:10
作者:Kaushal Shruti, Bhattacharya Debashruti, Kumar Saran, Herr Winship, Dhanjal Jaspreet Kaur, Minocha Shilpi
| 期刊: | BMC Genomics | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 26(1):654 |
| doi: | 10.1186/s12864-025-11786-5 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
