BACKGROUND: The cellular origin and molecular mechanisms of Barrett's esophagus (BE) are still controversial. Trans-differentiation is a mechanism characterized by activation of the intestinal differentiation program and inactivation of the squamous differentiation program. AIMS: Renal capsule grafting (RCG) was used to elucidate whether CDX2 overexpression on the basis of P63 deficiency in the esophageal epithelium may generate intestinal metaplasia. METHODS: P63(-/-);Villin-Cdx2 embryos were generated by crossing P63(+/-) mice with Villin-Cdx2 mice. E18.5 esophagus was xenografted in a renal capsule grafting (RCG) model. At 1, 2, or 4 weeks after RCG, the mouse esophagus was immunostained for a proliferation marker (BrdU), squamous transcription factors (SOX2, PAX9), squamous differentiation markers (CK5, CK4, and CK1), intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6), intestinal columnar epithelial cell markers (A33, CK8), goblet cell marker (MUC2, TFF3), Paneth cell markers (LYZ and SOX9), enteroendocrine cell marker (CHA), and Tuft cell marker (DCAMKL1). RESULTS: The P63(-/-);Villin-Cdx2 RCG esophagus was lined with proliferating PAS/AB+ cuboidal cells and formed an intestinal crypt-like structure. The goblet cell markers (TFF3 and MUC2) and intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6) were expressed although no typical morphology of goblet cells was observed. Other intestinal cell markers including enteroendocrine cell marker (CHA), Paneth cell markers (LYZ and Sox9), and intestinal secretory cell marker (UEA/WGA) were also expressed in the P63(-/-);Villin-Cdx2 RCG esophagus. Squamous cell markers (PAX9 and SOX2) were also expressed, suggesting a transitional phenotype. CONCLUSION: CDX2 overexpression on the basis of P63 deficiency in esophageal epithelial cells induces Barrett's-like metaplasia in vivo. Additional factors may be needed to drive this transitional phenotype into full-blown BE.
P63 Deficiency and CDX2 Overexpression Lead to Barrett's-Like Metaplasia in Mouse Esophageal Epithelium.
P63 缺乏和 CDX2 过表达导致小鼠食管上皮发生巴雷特样化生
阅读:4
作者:Fang Yu, Li Wenbo, Chen Xiaoxin
| 期刊: | Digestive Diseases and Sciences | 影响因子: | 2.500 |
| 时间: | 2021 | 起止号: | 2021 Dec;66(12):4263-4273 |
| doi: | 10.1007/s10620-020-06756-8 | 种属: | Mouse |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
