Current livestock breeding is slow to respond to rapidly mounting environmental pressures that threaten sustainable animal protein production. New approaches can accelerate genetic improvement by multiplying valuable embryonic, rather than adult genotypes. Chimeras, derived from complementing a sterile host with a fertile donor embryo, provide a pathway to multiply and exclusively transmit elite male germlines. We established genetically sterile hosts and optimized embryo complementation conditions to achieve absolute germline transmission in sheep. The spermatogonia-specific gene NANOS2 was disrupted in male (NANOS2(+/-) , NANOS2(-/-) ) and female (NANOS2(-/-) ) ovine fetal fibroblasts via gRNA-Cas9-mediated homology-directed repair. Targeted cell strains and wild-type controls were used to produce cloned offspring for breeding and phenotyping. Male homozygous knockout clones lacked detectable germ cells, while the somatic compartment of the testis remained intact. By contrast, male monoallelic and female biallelic targeting of NANOS2 did not affect germline development, resulting in fertile animals capable of producing fertile offspring with normal reproductive performance. The germ cell niche in NANOS2(-/-) hosts was most efficiently complemented by aggregating compacted morulae, rather than earlier cleavage stages, resulting in 97% blastocyst chimerization. Embryo-complemented cloned lambs from two different donor cell lines showed variable chimerism across tissues from each germ layer, including various degrees of germline colonization. A subset of germline chimeras contained normal numbers of prospermatogonia, indicating that the germline was fully restored for absolute transmission of the donor cell genotype.
Morula complementation restores male germline in NANOS2 null sheep.
桑椹胚互补可恢复 NANOS2 缺失绵羊的雄性生殖细胞系
阅读:12
作者:McLean Zachariah L, Fermin Lisanne M, Appleby Sarah J, Wei Jingwei, Meng Fanli, Maclean Paul H, Perry Benjamin J, Brophy Brigid, Turner Pavla, Forrester-Gauntlett Blaise, Wells David N, Snell Russell G, Oback Björn
| 期刊: | PNAS Nexus | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 14; 4(7):pgaf200 |
| doi: | 10.1093/pnasnexus/pgaf200 | 靶点: | NANOS2 |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
