Diabetic wounds present a significant healthcare challenge due to impaired healing mechanisms, with dermal fibroblasts playing a crucial role in tissue repair. This study investigates the role of transient receptor potential canonical-3 (TRPC3) in the dysfunction of diabetic fibroblasts and explores the therapeutic potential of TRPC3 inhibition. Findings reveal that TRPC3 expression is significantly elevated in diabetic dermal fibroblasts, which correlates with suppressed transforming growth factor-beta (TGF-β) signaling and impaired differentiation into myofibroblasts. Inhibiting TRPC3 effectively restores fibroblast functionality by upregulating TGF-β1 and its downstream effector, SMAD4. This restoration enhances the expression of key myofibroblast markers, such as α-smooth muscle actin (ACTA2) and type I collagen (COL1a1), which are essential for wound contraction and extracellular matrix remodeling. These results establish TRPC3 as a critical regulator of fibroblast activity and present TRPC3 inhibition as a promising therapeutic strategy for improving wound healing in diabetic patients.
TRPC3 inhibition induces myofibroblast differentiation in diabetic dermal fibroblasts.
TRPC3抑制可诱导糖尿病真皮成纤维细胞向肌成纤维细胞分化
阅读:7
作者:Toogood Gemma, Evans Robin, Zhang Liping, Patel Rima, Meng Songmei, Boda Vijay K, Li Wei, Xu Junwang
| 期刊: | Frontiers in Physiology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 30; 16:1577118 |
| doi: | 10.3389/fphys.2025.1577118 | 研究方向: | 细胞生物学 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
