Macrophage-Specific Progranulin Deficiency Prevents Diet-Induced Obesity through the Inhibition of Hypothalamic and Adipose Tissue Inflammation.

巨噬细胞特异性前粒蛋白缺乏症通过抑制下丘脑和脂肪组织炎症来预防饮食引起的肥胖

阅读:11
作者:Lee Chan Hee, Park Chae Beom, Kim Hyun-Kyong, Jang Won Hee, Min Se Hee, Kim Jae Bum, Kim Min-Seon
BACKGRUOUND: Chronic low-grade inflammation in multiple metabolic organs contributes to the development of insulin resistance induced by obesity. Progranulin (PGRN) is an evolutionarily-conserved secretory protein implicated in immune modulation. The generalized deletion of the PGRN-encoded Grn gene improves insulin resistance and glucose intolerance in obese mice fed a high-fat diet (HFD). However, it remains unclear which cells or organs are responsible for the beneficial metabolic effect of Grn depletion. METHODS: Considering the critical role of macrophages in HFD-induced obesity and inflammation, we generated mice with a macrophage-specific Grn depletion (Grn-MΦKO mice) by mating lysozyme M (LysM)-Cre and Grn-floxed mice. Body weight, food intake, energy expenditure, and glucose and insulin tolerance were compared between Grn-MΦKO mice and their wildtype (WT) controls under normal chow diet (NCD)- or HFD-fed conditions. We also examined macrophage activation and inflammation- related gene expression in the visceral adipose tissue and hypothalamus along with insulin and leptin signaling. RESULTS: Grn-MΦKO mice showed no alteration in metabolic phenotypes under NCD-fed conditions. However, upon HFD feeding, these mice exhibited less weight gain and improved glucose and insulin tolerance compared to WT mice. Moreover, HFD-induced macrophage activation and proinflammatory cytokine expression were significantly reduced in both the adipose tissue and hypothalamus of Grn-MΦKO mice, while HFD-induced impairments in leptin and insulin signaling showed improvement. CONCLUSION: Macrophage-derived PGRN and possibly other Grn products play a critical role in the development of HFD-induced obesity, tissue inflammation, and impaired hormonal signaling in both central and peripheral metabolic organs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。