Effect of bilateral carotid occlusion on cerebral hemodynamics and perivascular innervation: An experimental rat model.

双侧颈动脉闭塞对脑血流动力学和血管周围神经支配的影响:大鼠实验模型

阅读:8
作者:Rots M L, de Borst G J, van der Toorn A, Moll F L, Pennekamp C W A, Dijkhuizen R M, Bleys R L A W
We aimed to investigate the effect of chronic cerebral hypoperfusion on cerebral hemodynamics and perivascular nerve density in a rat model. Bilateral common carotid artery (CCA) ligation (n = 24) or sham-operation (n = 24) was performed with a 1-week interval. A subgroup (ligated n = 6; sham-operated n = 3) underwent magnetic resonance imaging (MRI) before the procedures and 2 and 4 weeks after the second procedure. After termination, carotids were harvested for assessment of complete ligation and nerve density in cerebral arteries that were stained for the general neural marker PGP 9.5 and sympathetic marker TH by computerized image analysis. Five rats were excluded because of incomplete ligation. MRI-based tortuosity of the posterior communicating artery (Pcom), first part of the posterior cerebral artery (P1) and basilar artery was observed in the ligated group, as well as an increased volume (p = 0.05) and relative signal intensity in the basilar artery (p = 0.04; sham-group unchanged). Immunohistochemical analysis revealed that compared to sham-operated rats, ligated rats had increased diameters of all intracircular segments and the extracircular part of the internal carotid artery (p < 0.05). Ligated rats showed a higher general nerve density compared to controls in P1 (10%, IQR:8.7-10.5 vs. 6.6%, IQR:5.5-7.4, p = 0.003) and Pcom segments (6.4%, IQR:5.8-6.5 vs. 3.2%, IQR:2.4-4.3, p = 0.003) and higher sympathetic nerve density in Pcom segments (3.7%, IQR:2.8-4.8 vs. 1.7%, IQR:1.3-2.2, p = 0.02). Bilateral CCA occlusion resulted in redistribution of blood flow to posteriorly located cerebral arteries with remarkable changes in morphology and perivascular nerve density, suggesting a functional role for perivascular nerves in cerebral autoregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。