Clinically, bone destruction caused by Mycobacterium tuberculosis was serious especially in patients with vitamin D (VD) deficiency. However, the role of VD in M. tuberculosis-induced bone destruction remains clear. In this context, we investigate the role of VD and vitamin D receptor (VDR) in the M. tuberculosis-induced bone destruction. First, we infected RAW264.7 and bone marrow-derived macrophages (BMMs) with Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) in vitro. Then, we activated VDR through VD administration. TRAP and FAK staining, bone resorption assays, immunofluorescence staining, qPCR, and western blot were carried out. In vivo, the M. tuberculosis-induced osteolytic model on the murine skull was established and the μCT and histological analyses were performed. We found that VDR and TRAP were upregulated in bone tuberculosis tissue and proved that M. tuberculosis infection promoted osteoclastogenesis in RAW264.7 and BMMs. VD could inhibit osteoclasts differentiation, fusion, and bone resorption dose-dependently. However, when VDR was knocked down, the inhibitory effect of VD on osteoclasts disappeared. In mechanism, activation of VDR inhibits the phosphorylation of IκB α, thereby inhibiting NFκB signaling pathway and alleviating osteoclastogenesis. Furthermore, in the skull osteolysis model, VD administration reduced osteolysis, but not in VDR(-/-) mice. Our study, for the first time, demonstrates that activation of VDR by VD administration inhibits M. tuberculosis-induced bone destruction. Our results reveal that VD and VDR are potential therapeutic targets for M. tuberculosis-induced bone destruction, and are of great clinical significance for the development of new therapeutic strategies.
Vitamin D receptor activated by vitamin D administration alleviates Mycobacterium tuberculosis-induced bone destruction by inhibiting NFκB-mediated aberrant osteoclastogenesis.
维生素 D 受体通过维生素 D 的给药激活,从而抑制 NF-κB 介导的异常破骨细胞生成,减轻结核分枝杆菌引起的骨破坏
阅读:5
作者:Deng Jiezhong, Yang Yusheng, He Jinyue, Xie Zhao, Luo Fei, Xu Jianzhong, Zhang Zehua
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2021 | 起止号: | 2021 Jun;35(6):e21543 |
| doi: | 10.1096/fj.202100135R | 研究方向: | 细胞生物学 |
| 信号通路: | NF-κB | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
