BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem). This is mainly attributed to the antioxidant defense system (glutathione and aldehyde dehydrogenase (ALDH) 1A1), which sustains stemness features of cancer stem cells (CSCs) and activated pancreatic stellate cells (PSCs)-generated excess stromal proteins. This dense stroma retards drug delivery. METHODS: This study established co-spheroid model consisting of mouse PDAC cell line (KPC) and PSCs (1:5) to accurately investigate the anti-PDAC activity of nanocomplex of ferrous oxide nanoparticles-diethyldithiocarbamate (FeO NPs-DE), compared to Gem, using in vitro and in vivo 3D models. RESULTS: In vitro and in vivo co-spheroid models demonstrated higher therapeutic efficacy of FeO NPs-DE than Gem. FeO NPs-DE induced selective accumulation of iron-dependent ferroptosis (non-apoptosis)-generated a lethal lipid peroxidation that was potentiated by DE-mediated glutathione and ALDH1A1 suppression. This led to collapse of stemness, as evidenced by down-regulating CSC genes and p-AKT protein expression. Subsequently, gene and/or protein levels of PSC activators (transforming growth factor (TGF)-β, plasminogen activator inhibitor-1, ZEB1, and phosphorylated extracellular signal-regulated kinase) and stromal proteins (collagen 1A2, smooth muscle actin, fibronectin, and matrix metalloproteinase-9) were suppressed. Moreover, DE of nanocomplex enhanced caspase 3-dependent apoptosis with diminishing the main oncogene, BCL-2. CONCLUSIONS: FeO NPs-DE had a stronger eradicating effect than Gem on primary and metastatic peritoneal PDAC tumors. This nanocomplex-mediated ferroptosis and stemness inhibition provides an effective therapeutic approach for PDAC.
Ferroptosis- and stemness inhibition-mediated therapeutic potency of ferrous oxide nanoparticles-diethyldithiocarbamate using a co-spheroid 3D model of pancreatic cancer.
利用胰腺癌共球体 3D 模型研究氧化亚铁纳米颗粒-二乙基二硫代氨基甲酸酯通过抑制铁死亡和干细胞特性介导的治疗效力
阅读:7
作者:Abu-Serie Marwa M, Gutiérrez-GarcÃa Ana K, Enman Macie, Vaish Utpreksha, Fatima Huma, Dudeja Vikas
| 期刊: | Journal of Gastroenterology | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 May;60(5):641-657 |
| doi: | 10.1007/s00535-025-02213-3 | 研究方向: | 发育与干细胞、细胞生物学 |
| 疾病类型: | 胰腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
