Dual Functional Mesoporous Silicon Nanoparticles Enhance the Radiosensitivity of VPA in Glioblastoma.

双功能介孔硅纳米粒子增强丙戊酸对胶质母细胞瘤的放射敏感性

阅读:5
作者:Zhang Hailong, Zhang Wei, Zhou Yong, Jiang Yuhua, Li Shupeng
Radiotherapy is a critical strategy and standard adjuvant approach to glioblastoma treatment. One of the major challenges facing radiotherapy is to minimize radiation damage to normal tissue without compromising therapeutic effects on cancer cells. Various agents and numerous approaches have been developed to improve the therapeutic index of radiotherapy. Among them, radiosensitizers have attracted much attention because they selectively increase susceptibility of cancer cells to radiation and thus enhance biological effectiveness of radiotherapy. However, clinical translation of radiosensitizers has been severely limited by their potential toxicity to normal tissue. Recent advances in nanomedicine offer an opportunity to overcome this hindrance. In this study, a dual functional mesoporous silica nanoparticle (MSN) formulation of the valproic acid (VPA) radiosensitizer was developed, which specifically recognized folic acid-overexpressing cancer cells and released VPA conditionally in acidic turmeric microenvironment. The efficacy of this targeted and pH-responsive VPA nanocarrier was evaluated as compared to VPA treatment approach in two cell lines: rat glioma cells C6 and human glioma U87. Compared to VPA treatment, targeted VPA-MSNs not only potentiated the toxic effects of radiation and led to a higher rate of cell death but also enhanced inhibition on clonogenic assay. More interestingly, these effects were further accentuated by VPA-MSNs at low pH values. Western blot analysis showed that the effects were mediated via enhanced apoptosis-inducing effects. Our results suggest that the adjunctive use of VPA-MSNs may enhance the effectiveness of radiotherapy in glioma treatment by lowering the radiation doses required to kill cancer cells and thereby minimize collateral damage to healthy adjacent tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。