CONTEXT: Xiao-Luo-Wan (XLW), a classical prescription in traditional Chinese medicine, has therapeutic effects on uterine fibroids (UFs). Herein, its anti-UF effects were examined using a systematic pharmacological method. OBJECTIVE: To explore the active ingredients of XLW via mass spectrometry and its potential effects on UFs by network pharmacology, molecular docking, and experimental validation. MATERIALS AND METHODS: A mass spectrometer was used to scrutinize the composition of the XLW drug-containing serum. The critical targets and potential mechanisms of XLW against UFs were predicted by network pharmacology and molecular docking. Next, human uterine leiomyoma cells (UMCs) were treated with 20%, 30%, or 40% XLW serum for 24âh, 48âh or 72âh. Cell viability was analyzed via a CCK-8 assay, and cell apoptosis and the cell cycle were examined via flow cytometry. The predicted targets were further identified by RT-PCR and western blotting. RESULTS: There were 16 chemical components identified in XLW drug-containing serum, with 53 target genes predicated in the treatment of UFs. The molecular binding of core targets, including TRIM9, NF-κB and p38MAPK, was relatively stable to components, especially buergerinin B, cedrol and ent-15B-16-epoxy- kauan-17-ol. The in vitro experiments revealed that the IC(50) of XLW in UMCs was 63.21%, and the anti-UF effects of XLW may be closely associated with targets that inhibit cell proliferation and promote cell apoptosis by regulating TRIM9, NF-κB and p38MAPK expression. DISCUSSION AND CONCLUSIONS: The integration of mass spectrometry, network pharmacology, molecular docking and biological experiments revealed the key constituents of XLW and its pharmacological mechanism in UFs, which may help in the discovery of therapeutic agents for treating UFs.
Integrated pharmacoanalysis, bioinformatics analysis, and experimental validation to identify the ingredients and mechanisms of Xiao-Luo-Wan in uterine fibroids treatment.
综合药理分析、生物信息学分析和实验验证,确定小罗丸治疗子宫肌瘤的成分和机制
阅读:7
作者:Yu Yonghui, Zhang Haojun, Yang Fang, Liu Hong
| 期刊: | Pharmaceutical Biology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Dec;63(1):201-217 |
| doi: | 10.1080/13880209.2025.2485905 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
