Obesity affects female reproductive performance by impairing the ovarian and uterine environments. Using a diet-induced obesity mouse model, we examined whether a high-fat diet (HFD) regimen affects the gene expression profile in ovarian granulosa cells (GCs) and whether short-term HFD has similar effects on gene expression as long-term HFD. C57BL/6J mice were fed a HFD or normal diet (ND) for 16-18 weeks (long-term group) or 4 weeks (short-term group). GCs were collected from each group of mice for RNA-sequencing. RT-PCR and immunofluorescence staining were performed to validate the results. RNA-sequencing analyses of the GCs revealed that several immediate early genes, including early growth response 1 (Egr1), an important mediator of ovulation, were significantly downregulated in HFD GCs. Protein tyrosine phosphatase receptor type C (Ptprc) and hematopoietic type prostaglandin D synthase (Hpgds), both of which are associated with increased inflammation, were significantly upregulated in HFD GCs. Downregulation of Egr1 was also confirmed in the GCs of short-term HFD mice, suggesting that it constitutes an early change in response to a HFD. Increased expression of several transcription factors in HFD GCs suggests that a HFD may affect the overall transcriptional landscape. The results may indicate possible modulation of the immune environment in HFD ovaries. These results provide novel insights into the molecular changes in GCs in obese environments.
Diet-Induced Obesity Alters Granulosa Cell Transcriptome and Ovarian Immune Environment in Mice.
饮食诱导的肥胖会改变小鼠卵泡颗粒细胞转录组和卵巢免疫环境
阅读:4
作者:Lee Minseo, Son Sujin, Oh Surim, Shin Eunbin, Shin Hyejin, Kwon Ohrim, Hwang Sohyun, Song Haengseok, Lim Hyunjung Jade
| 期刊: | Life-Basel | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Feb 20; 15(3):330 |
| doi: | 10.3390/life15030330 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
