Adequate tissue engineered models are required to further understand the (patho)physiological mechanism involved in the destructive processes of cartilage and subchondral bone during rheumatoid arthritis (RA). Therefore, we developed a human in vitro 3D osteochondral tissue model (OTM), mimicking cytokine-induced cellular and matrix-related changes leading to cartilage degradation and bone destruction in order to ultimately provide a preclinical drug screening tool. To this end, the OTM was engineered by co-cultivation of mesenchymal stromal cell (MSC)-derived bone and cartilage components in a 3D environment. It was comprehensively characterized on cell, protein, and mRNA level. Stimulating the OTM with pro-inflammatory cytokines, relevant in RA (tumor necrosis factor α, interleukin-6, macrophage migration inhibitory factor), caused cell- and matrix-related changes, resulting in a significantly induced gene expression of lactate dehydrogenase A, interleukin-8 and tumor necrosis factor α in both, cartilage and bone, while the matrix metalloproteases 1 and 3 were only induced in cartilage. Finally, application of target-specific drugs prevented the induction of inflammation and matrix-degradation. Thus, we here provide evidence that our human in vitro 3D OTM mimics cytokine-induced cell- and matrix-related changes-key features of RA-and may serve as a preclinical tool for the evaluation of both new targets and potential drugs in a more translational setup.
A Human Osteochondral Tissue Model Mimicking Cytokine-Induced Key Features of Arthritis In Vitro.
体外模拟细胞因子诱导的关节炎关键特征的人类骨软骨组织模型
阅读:4
作者:Damerau Alexandra, Pfeiffenberger Moritz, Weber Marie-Christin, Burmester Gerd-Rüdiger, Buttgereit Frank, Gaber Timo, Lang Annemarie
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2020 | 起止号: | 2020 Dec 24; 22(1):128 |
| doi: | 10.3390/ijms22010128 | 种属: | Human |
| 研究方向: | 细胞生物学 | 疾病类型: | 关节炎 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
