The generation of mouse olfactory bulb (OB) interneurons (INs) is initiated in the embryo but continues throughout life. It is generally agreed that OB INs generated postnatally affect the connectivity of the OB, depending on the timeline of neurogenesis. Here, we focused on OB INs generated embryonically, which have generally received less attention than those generated in the adult. Birthdates of embryonic INs were differentiated by maternal injections of thymidine analogs and their final destinations and phenotypes in the OB analyzed by immunohistochemistry. We found that the first embryonic INs were generated at embryonic day 10 (E10) and continued through the entire embryonic development. Analysis in adult tissues showed that embryonic INs were retained and were distributed across all layers of the OB. Interestingly, an initial lateral preference in cell density was seen in INs generated during E11-E13. Although INs are broadly distributed in the OB, we found that within the granule cell layer (GCL), OB INs distributed mostly in the superficial GCL. Immunostaining for calbindin, parvalbumin, tyrosine hydroxylase, 5T4 and calretinin were lacking co-expression with thymidine analogs labeled cells, suggesting that maturation of embryonic INs occurred slowly following birth. We studied the embryonic neuroblasts migration and differentiation by labeling IN progenitor cells in the lateral ganglionic eminence using in utero electroporation. We found that IN neuroblasts reached the primordial OB as early as E13 and began to differentiate apical dendrites by E15, which extended into the developing external plexiform layer. We established E16 as the embryonic stage at which the prototypical chain of migrating neuroblasts denoting the embryonic rostral migratory stream (RMS) was visible. Collectively, our data highlight the importance of studying OB INs in isolated time windows to better understand the formation of circuits that define the olfactory system function.
Olfactory bulb interneurons - The developmental timeline and targeting defined by embryonic neurogenesis.
嗅球中间神经元——由胚胎神经发生定义的发育时间线和靶向
阅读:7
作者:Spence Natalie J, Martin-Lopez Eduardo, Han Kimberly, Lefèvre Marion, Lange Nathaniel W, Brennan Bowen, Greer Charles A
| 期刊: | Molecular and Cellular Neuroscience | 影响因子: | 2.400 |
| 时间: | 2025 | 起止号: | 2025 Jun;133:104007 |
| doi: | 10.1016/j.mcn.2025.104007 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
