mTOR-Mediated Autophagy Regulates Cadmium-Induced Kidney Injury via Pyroptosis.

mTOR介导的自噬通过细胞焦亡调节镉诱导的肾损伤

阅读:4
作者:Hu Yuan, Wang Kui, Xu Jie, Wan Guohuan, Zhao Yiyi, Chen Yajing, Jiang Kangfeng, Li Xiaobing
The heavy metal cadmium (Cd) affects the global livestock production economy mainly through the contamination of feed raw materials and secondary contamination in feed processing, and it also poses a serious threat to food safety and human health. The nucleotide-binding oligomerization domain-like pyrin-domain-containing protein 3 (NLRP3) inflammasome is a key regulatory element of pyroptosis, which is engaged in kidney injury. Meanwhile, autophagy is also involved in renal inflammation. Mammalian target of rapamycin (mTOR) plays an important role in pyroptosis and autophagy, but its function in Cd-induced kidney injury remains unclear. In this study, we explored the role of mTOR-mediated autophagy and pyroptosis in kidney injury caused by Cd exposure and elucidated its underlying mechanism. Our data showed that Cd exposure reduced the integrity of kidney cell membranes, increased the expression of pyroptosis-associated proteins, and promoted the release of inflammatory cytokines. Subsequently, a notable attenuation in Cd-induced pyroptosis was observed following the administration of CY-09, an NLRP3 inhibitor. In addition, Cd exposure promoted autophagy in kidney cells. Importantly, in both in vivo and in vitro experiments, rapamycin, an mTOR inhibitor, downregulated the expression of pyroptosis-related proteins, thereby significantly improving Cd-induced kidney injury. In summary, our results indicate that mTOR-mediated autophagy has a significant protective effect on NLRP3 inflammasome-dependent kidney injury induced by Cd exposure, thus providing new insights into the prevention and treatment of Cd poisoning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。