Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. Among these, D-amino acids such as D-tryptophan (D-Trp) have emerged as key regulators of cellular processes; however, their therapeutic potential in diabetic wounds remains largely unexplored. Here, we investigate the therapeutic potential of D-Trp in streptozotocin (STZ)-induced diabetic mice, comparing it with phosphate-buffered saline (PBS) controls and vascular endothelial growth factor (VEGF) as a positive control. Wound healing, inflammation, and histopathology were assessed. Protein and gene expression were analyzed via Western blot and RT-qPCR, respectively. Biolayer interferometry (BLI) measured the binding of D-Trp to hypoxia-inducible factor-1α (HIF-1α). D-Trp accelerated wound healing by modulating extracellular matrix (ECM) remodeling, signaling, and apoptosis. It upregulated matrix metalloproteinases (MMP1, MMP3, MMP-9), Janus kinase 2 (JAK2), and mitogen-activated protein kinase (MAPK) proteins while reducing pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], IL-6). D-Trp also suppressed caspase-3 and enhanced angiogenesis through HIF-1α activation. These findings suggest that D-Trp promotes healing by boosting ECM turnover, reducing inflammation, and activating MAPK/JAK pathways. Thus, D-Trp is a promising therapeutic for diabetic wounds.
D-Tryptophan Promotes Skin Wound Healing via Extracellular Matrix Remodeling in Normal and Diabetic Models.
D-色氨酸通过细胞外基质重塑促进正常和糖尿病模型中的皮肤伤口愈合
阅读:9
作者:Tadese Dawit Adisu, Mwangi James, Michira Brenda B, Wang Yi, Cao Kaixun, Yang Min, Khalid Mehwish, Wang Ziyi, Lu Qiumin, Lai Ren
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 24; 26(15):7158 |
| doi: | 10.3390/ijms26157158 | 研究方向: | 细胞生物学 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
