Identification of genetically engineered strategies to manipulate nano-platforms presenting immunotherapeutic ligands for alleviating primary ovarian insufficiency progression.

确定基因工程策略,以操纵纳米平台,展示免疫治疗配体,从而缓解原发性卵巢功能不全的进展

阅读:6
作者:Zhou Guannan, Gu Yuanyuan, Zhang Menglei, Ding Jingxin, Lu Guanming, Hua Keqin, Shen Fang
Primary ovarian insufficiency (POI) is a pathological condition characterized by the early loss of functional ovarian follicles, leading to infertility and systemic consequences affecting reproductive, skeletal, cardiovascular, and neurocognitive helath. Aberrant immune activation, particularly an augmented T cell response in the ovary, plays a critical role in POI pathogenesis. In this context, therapeutic modulation of immune responses through immune checkpoint ligands has garnered interest. In the present study, we identified Lamp2b as an optimal scaffold for engineering extracellular vesicles (EVs). By genetically modifying HEK-293 T-derived EVs to present PD-L1 and Gal-9, enabling them to suppress ovarian autoreactive T lymphocytes and protect ovarian cells from immune-mediated destruction. Functionally, the bioengineered nanoplatform demonstrated potent immunosuppressive effects by promoting apoptosis of effector T cells, reducing intraovarian CD8⁺ T cell infiltration and reinstating serum anti-Müllerian hormone (AMH) levels in POI models. These combined actions effectively halted disease progression, ultimately preventing POI progression and preserving ovarian function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。