Hydrophilic/Omniphobic Droplet Arrays for High-throughput and Quantitative Enzymology.

用于高通量和定量酶学的亲水/全疏水液滴阵列

阅读:3
作者:Lee Byungjin, Sunden Fanny, Miller Michael, Pak Bumshik, Krebber Anke, Lutz Stefan, Fordyce Polly Morrell
Engineered enzymes with enhanced or novel functions are specific catalysts with wide-ranging applications in industry and medicine. Here, we introduce droplet array microfluidic enzyme kinetics (DA-MEK), a high-throughput enzyme screening platform that combines water-in-air droplet microarrays formed on patterned superhydrophilic/omniphobic surfaces with cell-free protein synthesis to enable cost-effective expression and quantitative kinetic characterization of enzyme variants. By printing DNA templates encoding enzyme variants onto hydrophilic spots, stamping slides to add cell-free expression mix, and imaging the resulting arrays, we demonstrate reproducible expression of enzyme variants across hundreds of microwells per slide, with line of sight toward replicating this across larger libraries. By specifically patterning slides with antibodies, we further demonstrate parallel immobilization, purification, and iterative characterization of the expressed variants. Subsequent stamping of fluorogenic substrates and time-lapse imaging allows determination of Michaelis-Menten parameters for each variant, with measured catalytic efficiencies spanning 5 orders of magnitude and agreeing well with values obtained via traditional microtiter plate assays. DA-MEK consumes orders of magnitude less reagents than plate-based assays, while providing accurate and detailed kinetic information for both beneficial and deleterious mutations. In future work, we anticipate that DA-MEK will provide a powerful and versatile platform to accelerate enzyme engineering and enable screening of large variant libraries under diverse conditions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。