Engineering of CD63 Enables Selective Extracellular Vesicle Cargo Loading and Enhanced Payload Delivery.

CD63 的工程改造可实现选择性细胞外囊泡货物装载和增强有效载荷递送

阅读:4
作者:Obuchi Wataru, Zargani-Piccardi Ayrton, Leandro Kevin, Rufino-Ramos David, Di Lanni Emilio, Frederick Dawn Madison, Maalouf Katia, Nieland Lisa, Xiao Tianhe, Repiton Pierre, Vaine Christine A, Kleinstiver Benjamin P, Bragg D Cristopher, Lee Hakho, Miller Miles A, Breakefield Xandra O, Breyne Koen
Extracellular vesicles (EVs) are mediators of intercellular communication through the transfer of nucleic acids, lipids and proteins between cells. This property makes bioengineered EVs promising therapeutic vectors. However, it remains challenging to isolate EVs with a therapeutic payload due to the heterogeneous nature of cargo loading into EVs. In this study, enrichment of EVs with a desired cargo was possible through engineering of the hallmark CD63 transmembrane protein. E-NoMi refers to engineered CD63 with mCherry on the inside of the EV membrane and a tag (3xFLAG) exposed on the outside of the EV membrane. To facilitate EV loading during biogenesis, cargo proteins, such as EGFP, Cre recombinase and the CRISPR-Cas nuclease (SaCas9), were fused to a nanobody (Nb) protein with a high affinity for mCherry. FLAG-tag-based immunocapture from cell conditioned media allowed selection of cargo-loaded E-NoMi-EVs, and tobacco etch virus (TEV) protease cleavage sites were used to remove the 3xFLAG-tag from the surface of E-NoMi-EVs after capture. For functional payload delivery to recipient cells, the vesicular stomatitis virus G (VSV-G) fusogenic protein was incorporated into E-NoMi-EVs to form fusogenic EV-based vectors (EVVs) and proved to be 10-fold more effective at cargo delivery than EVs generated by size-exclusion chromatography. Functional delivery of cargo with E-NoMi-EVVs was validated in two mouse brain models in vivo.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。