Alcohol and its metabolites dysregulate cellular bioenergetics and induce oxidative and endoplasmic reticulum stress in primary human bronchial epithelial cells.

酒精及其代谢产物会扰乱细胞生物能量学,并诱导原代人支气管上皮细胞的氧化应激和内质网应激

阅读:5
作者:Kaphalia Lata, Srinivasan Mukund P, Kaphalia Bhupendra S, Calhoun William J
BACKGROUND: Chronic alcohol consumption/misuse is a significant risk factor for pneumonia and lung infection leading to the development of chronic pulmonary disorders such as chronic obstructive pulmonary disease (COPD) and lung fibrosis. In this study, we sought to delineate the mechanism of alcohol-associated lung disease. We did so by measuring in vitro mitochondrial, endoplasmic reticulum (ER) oxidative stress in human bronchial epithelial cells (hBECs) treated with ethanol and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters or FAEEs) metabolites. METHODS: Primary hBECs from a normal subject were treated with relevant concentrations of ethanol and its metabolites and incubated at 37°C for 24 h. Viability and cytotoxicity were determined using cell viability and lactate dehydrogenase (LDH) assay kits, respectively. Oxidized glutathione (GSSG) and reduced glutathione (GSH) were measured by colorimetric reaction, and 4-hydroxynenonal (4HNE) by immunohistochemistry. Endoplasmic reticulum stress and dysregulated cellular bioenergetics were determined by western blot analysis. Mitochondrial stress and real-time ATP production rates were determined using a Seahorse Extracellular Flux analyzer. Amelioration of ethanol-induced oxidative/ER stress and mitochondrial energetics was determined using an AMPKα agonist. RESULTS: Human bronchial epithelial cells treated with ethanol, acetaldehyde, and FAEEs showed a concentration-dependent increase in the secretion of LDH, oxidative/ER stress, deactivation of AMPKα phosphorylation and mitochondrial stress (decreased spare respiratory capacity) with concomitant decreases in mitochondrial and glycolytic ATP production rates. FAEEs caused greater cytotoxicity, ER stress, and dysregulated cellular bioenergetics than those ethanol and its oxidative metabolite. AMPKα agonist-pretreated cells significantly ameliorated ethanol-induced oxidative/ER stress, deactivation of AMPKα, and dysregulated cellular bioenergetics. CONCLUSIONS: Findings of this study suggest that ethanol and its metabolites contribute to cytotoxicity, oxidative/ER stress, and dysregulation of cellular bioenergetics in hBECs. The attenuation of ethanol-induced ER/oxidative stress and mitochondrial respiration by an AMPKα agonist may reflect a potential for it to be developed as a therapeutic agent for chronic alcohol-associated lung disease.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。