Investigating tumor immunogenicity as a determinant of differential abscopal effects.

研究肿瘤免疫原性作为差异性远隔效应的决定因素

阅读:15
作者:Jeong Yoon Seok, Lee Kyoung Jin, Kim Yeon Ju, Lee Seung Jin, Koom Woong Sub, Lee Ik Jae, Kim Kyung Hwan
This study investigated the role of tumor immunogenicity in the ionizing radiation (IR)-induced abscopal effect. The ovalbumin-expressing B16 cell line (B16-OVA) served as a relatively immunogenic tumor model compared to the B16F10 cell line. C57BL/6 mice were implanted with B16-OVA or B16F10 in the left thigh as the primary tumor and B16F10 in the right thigh as the secondary tumor to evaluate the abscopal response. IR was applied solely to the primary tumor, followed by administration of isotype or anti-programmed cell death protein-1 (PD-1) antibodies. Tumor-infiltrating immune cells were analyzed using flow cytometry. B16-OVA tumors exhibited increased T-cell infiltration and elevated granzyme B and Ki-67 expression in CD8+ T cells compared to B16F10 tumors. IR delayed secondary tumor growth in B16-OVA-irradiated mice, but not in B16F10-irradiated mice. While CD8+ T-cell numbers increased in the secondary tumors of both groups, regulatory T cells significantly increased only in B16F10-irradiated mice. IR promoted differentiation from stem-like TCF1+TIM3- to effector-like TCF1-TIM3+ CD8+ T cells, with elevated granzyme B expression. Polyfunctional T cells co-expressing IFN-γ, TNF-α and IL-2 were significantly increased only in secondary tumors of B16-OVA-irradiated mice under PD-1 blockade. The abscopal effect was abolished by FTY720 treatment and CD8+ T-cell depletion. In conclusion, the IR-induced abscopal effect was dependent on the immunogenicity of the irradiated tumor. The findings may have implication on enhancing abscopal effect in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。