Incorporation of Cross-Linked Gelatin Microparticles To Enhance Cell Attachment and Chondrogenesis in Carboxylated Agarose Bioinks for Cartilage Engineering.

将交联明胶微粒掺入羧化琼脂糖生物墨水中,以增强细胞附着和软骨形成,用于软骨工程

阅读:6
作者:Qian Yi, Gu Yawei, Tribukait-Riemenschneider Fabian, Martin Ivan, Shastri V Prasad
Due to the limited regenerative capacity of injured cartilage, surgical intervention using engineered cellular constructs or autologous cell implantation is the best accredited approach to prevent further degeneration and promote a regenerative microenvironment. Advancements in additive manufacturing present opportunities for graft customization through enhanced scaffold design. In bioprinting, an additive manufacturing process, the "bioink" serves as the medium to carry cells but also as a scaffold by imparting form and mechanical attributes to the printed object. In this study, the impact of cross-linked gelatin microparticles (GMPs) on rheological properties and printability of carboxylated agarose (CA) bioink as well as matrix deposition by human nasal chondrocytes (hNCs) was investigated. The introduction of GMPs yielded stiffer bioink formulations, with lower sol-gel transitions that retained the exceptional printability of CA. GMPs served as foci for the attachment of hNCs, improving cellular distribution and bridging the deposited extracellular matrix. After 4 weeks in chondrogenic culture, GMPs containing printed constructs showed enhanced toughness approaching that of the lower end of the spectrum of native cartilage tissue. The incorporation of proteinaceous microparticles might serve as a general concept to promote cellular function in polysaccharide-based bioinks and opens another avenue for engineering 3D-bioprinted microenvironments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。