BACKGROUND: Diabetics accumulate Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine (CML) in their skin, which can provoke changes in the skin's biomechanical properties. The same changes are also observed during aging. Collagen is one of the first targets of glycation, and this leads to the disruption of the dermis, potentially contributing to the skin complications seen in diabetes, like impaired wound healing and the formation of chronic ulcers. We therefore investigated whether it was possible to detect differences in the biomechanical properties of the reticular dermis by comparing C57/BL6 control mice, type 1 and type 2 diabetic mice, and aged mice. METHODS: To investigate this, we used an Atomic Force Microscope (a type of local probe microscope used to visualize the surface topography of a sample) to measure the elastic modulus of each skin sample. The elastic modulus is a parameter that describes a tissue's resistance to elastic deformation when stress is applied. We also determined whether diabetes is associated with the accumulation of AGEs via Western blots. RESULTS: We found that type 2 diabetic mice and aged mice had a stiffer reticular dermis than young control mice. No differences were found in type 1 diabetic mice. The results of the Western blot did not reveal any significant differences in the CML content in different types of mice, although a non-significant increase was found in type 2 diabetic and aged mice. We show that there is a significant positive correlation between the amount of CML in a mouse and the rigidity of its reticular dermis. CONCLUSIONS/INTERPRETATION: We have demonstrated that increased glycation in mouse skin is correlated with the biomechanical properties of that skin, which explains the wound healing defects diabetic patient's experience. AFM is therefore a powerful technique that could be used to characterize the mechanical effects of treatments aimed at reducing the level of AGEs in the skin.
Influence of Aging and Diabetes on the Mechanical Properties of Mouse Skin.
衰老和糖尿病对小鼠皮肤力学性能的影响
阅读:15
作者:Miny Sarah, Runel Gaël, Chlasta Julien, Bonod Christelle
| 期刊: | Dermatopathology | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 17; 12(2):18 |
| doi: | 10.3390/dermatopathology12020018 | 种属: | Mouse |
| 研究方向: | 代谢 | 疾病类型: | 糖尿病 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
