SARS-CoV-2-encoded miR-nsp3-3p promotes pulmonary fibrosis by inhibiting expression of ALCAM.

SARS-CoV-2 编码的 miR-nsp3-3p 通过抑制 ALCAM 的表达促进肺纤维化

阅读:13
作者:Yang Yang, Wu Qiuyue, Liu Xueyan, Zhou Hongjian, Lei Jianzhen, Luo Lan, Xia Xinyi
microRNAs (miRNAs) derived from viruses, have been detected in body fluids and are known to regulate the expression of host genes. Recent evidence indicates that SARS-CoV-2-encoded miRNAs could contribute to pulmonary disease. Pulmonary fibrosis is an important complication in SARS-CoV-2 infected patients, either during hospitalization or after discharge, however, the underlying mechanisms are not fully elucidated. Here, we report a SARS-CoV-2-encoded miRNA, miR-nsp3-3p, facilitates host pulmonary fibrosis by inhibiting expression of activated leukocyte cell adhesion molecule (ALCAM) and promoting epithelial-mesenchymal transition (EMT). First, we detected miR-nsp3-3p in clinical specimens and found it was remarkably increased in throat swabs and alveolar lavage fluids from severe/critical COVID-19 patients compared to control groups or mild/moderate patients. We further revealed that adeno-associated virus (AAV)-nsp3 infection can induce pulmonary fibrosis in BALB/c mice while miR-nsp3-3p antagomirs can reverse that, and ALCAM was found to be as a target gene of miR-nsp3-3p. miR-nsp3-3p overexpression can inhibit the expression of ALCAM and promote EMT of pulmonary epithelial cells. Moreover, overexpression of ALCAM can reverse the miR-nsp3-3p-induced EMT and fibrosis. These findings highlight the essential role of SARS-CoV-2-encoded miRNAs in promoting the pathological progression of lung disease, and provide novel insights into the interactions between viral miRNAs and host pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。