Tan IIA mitigates vascular smooth muscle cell proliferation and migration induced by ox-LDL through the miR-137/TRPC3 axis.

Tan IIA 通过 miR-137/TRPC3 轴减轻 ox-LDL 诱导的血管平滑肌细胞增殖和迁移

阅读:5
作者:Li Wei, Gao Zhi, Guan Qing-Long
Tanshinone IIA (Tan IIA) has an important role in treatment of cardiovascular diseases, including atherosclerosis. The vascular smooth muscle cells (VSMCs) are a major part of the atherosclerotic plaque. However, the biological functions of Tan IIA in regulating VSMCs function remain mostly unclear. This research aimed at identifying the explicit molecular mechanism that Tan IIA regulates oxidized low-density lipoprotein (ox-LDL)-mediated VSMC proliferation and migration. VSMCs challenged by ox-LDL were adopted as cellular model of atherosclerosis, and suffered from Tan IIA treatment. After that, cells proliferation, apoptosis or migration were measured. The expression levels of microRNA (miR)-137, transient receptor potential cation channel subfamily C member 3 (TRPC3) and proliferating cell nuclear antigen (PCNA) were measured. The targeting relationship between miR-137 and TRPC3 was determined. It was found that Tan IIA blunted VSMC proliferation, PCNA expression and migration mediated by ox-LDL. Tan IIA promoted miR-137 level, and miR-137 knockdown reversed the influences of Tan IIA on VSMC proliferation, PCNA expression and migration in the presence of ox-LDL. TRPC3 was verified to be targeted by miR-137. Moreover, TRPC3 silencing exacerbated the influences of Tan IIA on VSMC proliferation, apoptosis and migration, and it mitigated the inhibitive effects of miR-137 knockdown on function of Tan IIA. We confirmed for the first time that Tan IIA constrained ox-LDL-stimulated VSMC proliferation and migration via regulating the miR-137/TRPC3 axis, which provided a theoretical basis for the research and promotion of Tan IIA as a therapeutic drug.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。