Redox imbalance drives magnetic property and function changes in mice.

氧化还原失衡导致小鼠磁性及功能发生改变

阅读:8
作者:Feng Chuanlin, Zhang Lei, Zhou Xiaoyuan, Lu Shiyu, Guo Ruowen, Song Chao, Zhang Xin
The magnetic properties of substances directly determine their response to an externally applied magnetic field, which are closely associated with magnetoreception, magnetic resonance imaging (MRI), and magnetic bioeffects. However, people's understanding of the magnetic properties of living organisms remains limited. In this study, we utilized NRF2 (nuclear factor erythroid 2-related factor 2) deficient mice to investigate the contribution of redox (oxidation-reduction) homeostasis, in which the key process is the transfer of electron, a direct target of magnetic field and origin of paramagnetism. Our results show that the NRF2(-/-) mice exhibit significantly altered systemic redox state, accompanied by increased magnetic susceptibility, particularly in the liver and spleen. Further analyses reveal that the levels of paramagnetic reactive oxygen species (ROS) in these tissues are markedly elevated compared to wild-type mice. Moreover, the concentrations of Fe(2+) and Fe(3+) are significantly elevated in NRF2(-/-) mice, which are directly correlated with the increased magnetic susceptibility. The disrupted redox balance in NRF2(-/-) mice not only exacerbates oxidative stress and iron deposition, but also induces impairment to the liver and spleen. The findings highlight the combined effects of ROS and iron metabolism in driving magnetic susceptibility changes, providing valuable theoretical insights for further research into magnetic bioeffects and organ-specific sensitivity to magnetic fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。