Muscle atrophy and fibrosis are attenuated after experimental nerve repair associated with heterologous fibrin biopolymer.

与异源纤维蛋白生物聚合物相关的实验性神经修复可减轻肌肉萎缩和纤维化

阅读:6
作者:Muller Kevin Silva, Tiburcio Felipe Cantore, Ortiz Rinaldo Jose, Ferreira Junior Rui Seabra, Barraviera Benedito, de Castro E Horta José de Anchieta Júnior, Matheus Selma Maria Michelin
BACKGROUND: Neurotmesis leads to neuromuscular junction (NMJ) degeneration, muscle atrophy, and functional loss. While neurorrhaphy is standard, motor recovery is often incomplete. Heterologous fibrin biopolymer (HFB) shows potential as an adjunct, hence, we investigate HFB's late regenerative effects. MATERIAL/METHODS: Twenty adult male Wistar rats (CEUA-FMB 1402/2021) were divided into Control (C), Denervated (D), Neurorrhaphy (N), and Neurorrhaphy + HFB (NB) groups. After 120 days, nerves and muscles were analyzed. RESULTS: NB (1355 ± 170.4) showed more intact axons than C (927 ± 170.4, p = .0026) and N (774 ± 158.2, p = .0002). NMJ morphology in NB was closer to C than N, with increased nAChR alpha-1 (NB vs. N p = .0428; NB vs C p = .0084) and Rapsyn (NB vs. N p = .0130; NB vs C p = .0053) expression. Muscle integrity in NB resembled C, exhibiting less atrophy (area: C vs. N p = .0002; NB vs. N p = .0117; perimeter: C vs. N p = .0002; NB vs. N p = .0114; central nuclei: C vs. N p = .0009; NB vs. N p = .0110) and fibrosis (C vs. N p = .0061; N vs. NB p = .0326) compared to N. CONCLUSION: HFB associated with neurorrhaphy enhanced muscle and nerve regeneration, attenuating muscle atrophy and fibrosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。