Isobutyrate Confers Resistance to Inflammatory Bowel Disease through Host-Microbiota Interactions in Pigs.

异丁酸通过宿主-微生物群相互作用赋予猪对炎症性肠病的抵抗力

阅读:3
作者:Fang Xiuyu, Liu Haiyang, Liu Junling, Du Yongqing, Chi Zihan, Bian Yiqi, Zhao Xuan, Teng Teng, Shi Baoming
Supplementation with short-chain fatty acids (SCFAs) is a potential therapeutic approach for inflammatory bowel disease (IBD). However, the therapeutic effects and mechanisms of action of isobutyrate in IBD remain unclear. Clinical data indicate that the fecal levels of isobutyrate are markedly lower in patients with Crohn's disease than in healthy controls. Compared with healthy mice and healthy pigs, mice and pigs with colitis presented significantly lower isobutyrate levels. Furthermore, the level of isobutyrate in pigs was significantly negatively correlated with the disease activity index. We speculate that isobutyrate may play a crucial role in regulating host gut homeostasis. We established a model of dextran sulfate sodium-induced colitis in pigs, which have gastrointestinal structure and function similar to those of humans; we performed multiomic analysis to investigate the therapeutic effects and potential mechanisms of isobutyrate on IBD at both the animal and cellular levels and validated the results. Phenotypically, isobutyrate can significantly alleviate diarrhea, bloody stools, weight loss, and colon shortening caused by colitis in pigs. Mechanistically, isobutyrate can increase the relative abundance of Lactobacillus reuteri, thereby increasing the production of indole-3-lactic acid, regulating aryl hydrocarbon receptor expression and downstream signaling pathways, and regulating Foxp3(+) CD4(+) T cell recruitment to alleviate colitis. Isobutyrate can directly activate G protein-coupled receptor 109A, promote the expression of Claudin-1, and improve intestinal barrier function. In addition, isobutyrate can increase the production of intestinal SCFAs and 3-hydroxybutyric acid and inhibit the TLR4/MyD88/NF-κB signaling pathway to suppress intestinal inflammation. In conclusion, our findings demonstrate that isobutyrate confers resistance to IBD through host-microbiota interactions, providing a theoretical basis for the use of isobutyrate in alleviating colitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。