Evidence suggests that early life exposure to Bisphenol A (BPA) may impact neurobehavioral development in animals. BPA has been linked to changes in the dopamine level in the brain. However, molecular and cellular details of how BPA exposure causes these behavioral and cognitive outcomes are poorly understood. We examined how BPA affects the behaviors of adult mice and found that BPA induced hyperactivity and abnormal reward feedback in mice exposed at the early adult stage. We hypothesized that BPA might cause hyperactivity in mice by suppressing DAT trafficking. Fluorescence microscopy revealed that YFP-DAT remains in the perinuclear area when treated with BPA, compared to broader distribution throughout the cytoplasm in control cells. Results from MPTP toxicity and APPâ+âuptake assays indicate that the surface expression of DAT was reduced by BPA treatment. Immunofluorescence staining of neurons in the Substantia nigra (SN) area of the mouse brain also revealed that DAT remains in the perinuclear region, indicating lower surface expression of DAT in the SN, playing important roles in reward and movement. We used another in vivo model, C. elegans, expressing GFP-tagged DAT-1 fusion protein and found that exposure to 50 µM BPA induced a significant increase in the frequency of body bends. However, the frequency of body bends was significantly reduced at 100 µM BPA, indicating biphasic effects of BPA. In conclusion, our results suggest that BPA contributes to the alterations of mice and worm behavior by reducing DAT expression on the surface of neurons via blocking of DAT trafficking.
Chronic adulthood exposure to bisphenol A causes behavioral changes via suppressing dopamine transporter trafficking.
成年期长期接触双酚A会通过抑制多巴胺转运蛋白的运输而导致行为改变
阅读:5
作者:Shi Yu, Feng Xiaoye, Chung Chang Y
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 19; 15(1):13520 |
| doi: | 10.1038/s41598-025-98084-y | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
