OBJECTIVE: To exam the role of miR-92a/KLF2/miR-483 in the pathogenesis of metabolic syndrome. METHODS: In this study, the serum of healthy controls and patients with metabolic syndrome were collected to detect the circulating level of miR-92a and miR-483. In vitro cultured HUVECs, overexpression or suppression of miR-92a, miR-483 or KLF2 to determine the relationship among miR-92a, KLF2 and miR-483. Ang II, ox-LDL, or high glucose treatment were used to mimic the metabolic syndrome. HUVECs or HepG2 cells were treated with Telmisartan, Atorvastatin, or metformin, the miR-483 and its target gene expression was detected. In animal experiment, ob/ob mice were chose to confirm the changes of miR-92a, KLF2, and miR-483. RESULTS: Compared with the healthy controls, the level of miR-92a was significantly increased, while miR-483 level was remarkably decreased in the patients with metabolic syndrome. In vitro cultured HUVECS, overexpression of miR-92a significantly reduced the expression of miR-483, but overexpression of miR-483 had no effect on miR-92a. Overexpression of KLF2 could downregulate miR-483 level, while inhibition of KLF2 had the opposite effect. When HUVECs and HepG2 were stimulated with Ang II, ox-LDL and high glucose, the expression of miR-483 was significantly decreased and its target genes was increased. Anti-miR-92a could reverse the effect. Furthermore, Telmisartan, Atorvastatin, and Metformin significantly increased miR-483 expression and decreased its target gene expression, which could be reversed by miR-92a mimic. The level of miR-92a was significantly increased in HepG2 cells, which were treated with exosomes derived from endothelial cells with miR-92a overexpression. ob/ob mice showed the similar effects. CONCLUSIONS: Endothelial dysfunction and fatty liver are critically involved in the pathogenesis of metabolic syndrome. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and distal cell. Serum miR-92a level was higher in metabolic syndrome patients than controls. KLF2 is the target gene of miR-92a, which can increase the production of miR-483, miR-483 acts on its target genes CTGF, ET-1, and β-catenin to protect cell function. EC miR-92a is secreted out of cells into the blood, circulates through the blood to the liver, and continues to exert its biological effects after being absorbed by hepatocytes. LNA-miR-92a administration reversed endothelial cell damage and fatty liver caused by metabolic syndrome by affecting the KLF2/miR-483 pathway.
miR-92a aggravates metabolic syndrome via KLF2/miR-483 axis.
miR-92a 通过 KLF2/miR-483 轴加重代谢综合征
阅读:17
作者:Zhao Zhe, Ma Chaofeng, Wang Longzhi, Xia Yuhang, Li Jun, Yang Wei, Pang Juan, Ding Hui, Wang Haifeng, Bai Liang, Shang Fenqing, Zhang Feng
| 期刊: | Journal of Diabetes Investigation | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 May;16(5):893-906 |
| doi: | 10.1111/jdi.14416 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
