Multiple sclerosis (MS) is a demyelinating disease affecting the central nervous system associated with progressive neurodegeneration. Pirfenidone (Pir) is a well-known antifibrotic agent; however, Pir's function in MS is little explored. We evaluated the neuroprotective effects of Pir in MS and its possible underlying mechanisms. Forty male Swiss mice were divided equally into control, cuprizone (CPZ), Pir, and CPZ + Pir groups. Assessment of motor function was conducted using neurobehavioral tests, EMG, and nerve conduction velocity (NCV). Mice's brains were extracted to measure oxidative stress, neuroinflammatory markers, and the expression of neurotrophic genes. The corpus callosum and the sciatic nerve were subjected to histopathological and immunohistochemical studies. The CPZ group was associated with significant reductions in muscle power, frequency of contraction, sciatic NCV, SOD, IL-10, SIRT1, NGF, and neuregulin-1. Significant increases in MDA, TNF-α, INF-γ, IL-17, TGF-β, and NF-κB were also detected. Multiple areas of partially demyelinated nerve fibers in the corpus callosum, the loss of oligodendrocyte nuclei, and increased microglia and astrocytes were also observed. The sciatic nerve revealed partial demyelination with significantly reduced myelin basic protein (MBP) expression. Pir significantly restored motor function, demyelination, and neurodegenerative changes induced by CPZ. Besides the antifibrotic action of Pir, we concluded that it improves motor function in MS by alleviating the demyelinating process and neurodegeneration. Its potential anti-inflammatory, antioxidant, and antifibrotic properties could be contributing factors. These effects could be mediated by modulating the NF-κB, SIRT1, NGF, and neuregulin-1 pathways. Pir is a promising agent for treating MS.
Pirfenidone mitigates demyelination and electrophysiological alterations in multiple sclerosis: Targeting NF-κB, sirt1, and neurotrophic genes.
吡非尼酮可减轻多发性硬化症的脱髓鞘和电生理改变:靶向 NF-κB、sirt1 和神经营养基因
阅读:4
作者:Abo-Elsoud Reda A A, Ali Eman A, Al-Gholam Marwa A, Rizk Mohamed S, Elseadawy Rasha S A, Ameen Omnia
| 期刊: | Naunyn-Schmiedebergs Archives of Pharmacology | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;398(4):4019-4036 |
| doi: | 10.1007/s00210-024-03496-8 | 研究方向: | 神经科学 |
| 信号通路: | NF-κB | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
